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Abstract
In this contribution a framework for digital human modelling using optimal control of a biomechanical multibody
model is presented. The skeleton of the human body is represented as a multibody system, actuated by simplified
Hill muscles. Motions of the digital human model are generated by optimal control with different objective functions.
The optimal control problem is discretized by the DMOCC approach, using a variational integrator for the constrained
equations of motion. With this approach, the task of "lifting of a box from a lower to a higher position" is simulated
as a test example. Both arms are modeled with seven degrees of freedom each, actuated by 29 muscles. In the optimal
control problem an arbitrary grasp position is included, as well as frictional contact between the box and the hand.
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1. Introduction
In industry there is an increasing demand on simulating the dynamic motion of a worker and its interaction with the
environment for an ergonomic assessment of tasks, for example the assembly of parts, or moving heavy objects. For
given work instructions like ". . . move the part from A to B . . . ", a simulation should produce human like motion
with realistic joint torques and muscle forces. Optimal control of a biomechanical multibody system [1, 3] is a good
approach to create a simulation procedure for a digital human model that fulfills these requirements.

The human skeleton (or parts of it) are modeled as a multibody system (MBS), where, in contrast to [1, 3], a representa-
tion with minimal coordinates based on [4] is used due to performance issues [5, 6]. For a MBS with tree-like structure
the equations of motion are a system of ordinary differential equation (ODE), turning into a system of differential
algebraic equation (DAE) in the case of closed loop kinematics. Realistic inner forces can be obtained by including
muscle models into the biomechanical MBS of the digital human. There are a variety of different muscle models [7]
with different complexities. As in [3], we restrict ourselves to a string type Hill-model, where the active contractile
element (CC) creates a pulling force depending on the actuation, the length and the contraction velocity of the muscle.
This CC is connected in parallel to a (non-)linear spring (PEC) that represents the passive stiffness of the tissue. A
muscle is attached to the skeletal MBS in at least two body points, connected via a straight line. Hence, if the position
and velocity of the bones are known, also the length and the contractile velocity of the muscle can be evaluated. With
the help of these quantities and the activation the force Fm can be computed, which is acting on each point of the bones
in the direction of the muscle.

Human like motions of such a biomechanical MBS are generated by optimal control, where the control signals are the
activations of the muscles. This results in a time continuous optimization problem, including a mathematical model
of the working task in the constraints, besides the equations of motion. Motion trajectories with given characteristics
like e.g. minimal control effort, minimal kinetic energy or minimal execution time can be generated by choosing a
specifically constructed objective. The continuous optimal control problem is solved by applying the so called DMOCC
(discrete mechanics and optimal control for constrained systems) approach, including a variational integrator to solve
the constrained equation of motions in time. The corresponding finite dimensional optimization is solved with the
interior point method using the solver IPOPT [10].

This approach provides the possibility to simulate human-like motions of typical working procedures. As an application
example the simulation results of the task "lifting a box from a lower to a higher position" are investigated, with
prescribed start and end position, and the motion itself generated via optimal control.



This work is structured as follows: In section 2 the biomechanical multibody model and its dynamical equations are
described. The optimal control problem and the associated solution procedure are the main topic of section 3. The
simulation results of the test case of lifting a box are presented in section 4.

2. Biomechanical multibody system
In this section the underlying rigid body dynamics including the muscles as actuators are briefly presented, more details
can be found in [4]. In section 2.1 the dynamics of a single rigid body is presented. The computation of the dynamics
of a MBS in the special structure of a kinematic tree is outlined in section 2.2. In section 2.3 the equations of motion
of such a system with additional constraints is derived. The rheological model of the muscles and their connection to
the MBS are the topic of section 2.4.
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Figure 1: Example of a tree structured MBS with N = 9.

2.1. Rigid body
The inertial properties of a rigid body B is completely defined by a vector x ∈ R3 pointing to the center of mass, its
mass m ∈ R and its rotational inertia tensor I ∈ R3. As in [4] spatial vector algebra is used to simplify the calculation.
The velocity of the body is given by a six dimensional vector

V =

(
ωωω

v

)
∈ R6 , (1)

where ωωω ∈ R3 is the angular velocity and v ∈ R3 is the translational velocity. The spatial inertia tensor is given by

J=

(
I+mx̂ x̂T mx̂

mx̂T m1

)
, (2)

where ˆ(·) : R3→ so(3) maps a vector to a skew symmetric matrix such that x̂y = x×y holds for all y ∈R3. Hence, the
spatial momentum of the rigid body is given by P = JV. The components of P are the linear and angular momentum.
Combining the force f∈R3 and the torque τττ ∈R3 to a spatial force R := [τττT , fT ]T acting on the body, the Newton–Euler
equations describing the motion of the rigid body are given by

d
dt

P = J
d
dt

V− ṼT JV = R . (3)

Here ˜(·) : R6→ R6×6 maps a spatial vector to a spatial matrix according to:

Ṽ =
˜(w
v

)
=

(
ŵ 0
v̂ ŵ

)
. (4)



2.2. Kinematic tree
A kinematic tree is a MBS system without closed loops. Such a system consists of N rigid bodies Bi, which are
connected by N joints Ji. Additionally a base body B0 is introduced which represents the resting world frame. It is
assumed that joint Ji connects the body Bi with its parent Bp(i), where the mapping p : I→ I maps the index i ∈ I :=
{0,1, ...,N} of the body Bi to the index p(i) of its parent Bp(i). The indices of the bodies are chosen such that p(i)< i
holds. The vector qi ∈ Rni represent the coordinates of the joint Ji, where ni is the number of degrees of freedom.
Therefore, the configuration of the MBS is given by the vector q = [qT

1 ,q
T
2 , ...,q

T
N ]

T ∈Rn, which implies that the whole
system has n = ∑

N
i=1 ni degrees of freedom. The mapping κ : I→P(I) delivers the ordered set of body indices, which

are passed propagating backwards from Bi to base. In each joint Ji a transformation from Bp(i) to Bi is given by

iXp(i) =

(
Ri 0
−Rir̂i Ri

)
, (5)

where Ri ∈ SO(3) is a rotation and ri is the relative displacement, which both in general depend on the joint configu-
ration qi. Because of the tree structure of the system, the spatial velocity of the body Bi can be evaluated recursively
according to

Vi = ∑
j∈κ(i)

S j(q j)q̇ j , (6)

where S j(q j) ∈ R6×n j is the motion subspace of joint J j. This together with the spatial inertia tensors Ji yields the
following formula for the kinetic energy of the MBS

T (q, q̇) =
1
2

N

∑
i=1

vT
i Jivi =

1
2

N

∑
i=1

∑
k∈κ(i)

∑
l∈κ(i)

q̇T
k S

T
k (qk)JiSl(ql)q̇l = q̇TM(q)q̇ . (7)

Hence, the kinetic energy of the system and the corresponding derivatives can be calculated by a recursion starting with
the base body B0, whereby the computational cost scales linearly with the number of rigid bodies N. There is also a
fast way to compute the reduced forces acting on the rigid body with the same cost. For more details we refer to [4, 6].

2.3. Constrained mechanics
When closed loops occur in the system, as it is the case in the box lift example below, the MBS has to fulfill additional
holonomic constraints g :Rn→Rm. Let q : [t0, tF ]→Rn be the evolution of the MBS configuration, then the Lagrangian
L : [t0, t f ]→ R of the system is given by L = T −V , where T is the kinetic energy (7) and V is the potential energy.
Additionally, a non-conservative external force F(q, q̇,u) ∈ Rn is acting on the system, where u : [t0, tF ]→ Rk is a
external actuation. With the Lagrangian multipliers λλλ : [t0, tF ]→ Rm the Lagrange-d’Alembert principle states

δ

∫
L(q, q̇)+g(q) ·λλλdt +

∫
F(q, q̇,u) ·δqdt = 0 . (8)

By taking the variation of the first term with respect to q and λλλ , the constrained equations of motion are given by

∂L
∂q

(q, q̇)− d
dt

∂L
∂ q̇

(q, q̇)+F(q, q̇,u)+GT (q)λλλ = 0 , (9)

g(q) = 0 , (10)

where G : Rn→ Rm×n denotes the derivative G= ∂g
∂q of the constraint function with respect to the configuration.

2.4. Muscles
To actuate the multibody model representing the human skeleton, a simplified mathematical muscle model of Hill type
is used, as in [1, 3]. The rheological model of the muscle consists of a contractile element (CC) and an elastic spring
(PE), as sketched in the left image of Figure 2. The force generated by the CC depends on the current length l, the
contraction velocity l̇, the actuation level u ∈ [0,1] and the maximal isometric force Fmax of the muscle and is given by
FCC = fl(l) fv(l̇)uFmax. The length and the velocity dependencies are approximated by the following two functions

fl(l) = 1−
(l− lopt)

2

(lopt− l0)2 fv(v) =


vmax−v
vmax+

v
γ

v≥ 0
A

v
vmax−B +C v < 0

. (11)



Here l0 represents the minimal and lopt the optimal muscle length. The negative scalar vmax < 0 is the maximal contrac-
tive velocity of the muscle, and γ is a shape factor, while A,B,C ∈ R are chosen such that the function is differentiable
in 0. Both functions are visualized in Figure 3.

The PE element is approximated by a linear elastic spring FPE = k(l− l0) with stiffness k ∈R+. Since the elements are
connected in parallel, the muscle force is a linear superposition of both

Fm = FCC +FPE = k(l− l0)+ fl(l) fv(v)uFmax . (12)

To use the rheological Hill elements in MBS a piecewise linear string is used as approximation of the muscle path. This
string is defined by at least two points xI ,where each is rigidly connected to a rigid body Bi(I). The length of the muscle
is calculated by summarizing the distance between the points expressed in the base coordinate system l =∑‖xI−xI−1‖,
while the velocity is calculated equivalently. With these quantities and an actuation u, the scalar muscle force Fm ∈R is
calculated by (12). Then in every point xi a force pointing into the direction straight direction to the neighboring points
with magnitude Fm is applied, which induces a force and a torque in the corresponding body. In the right image of
Figure 2 two string muscles are visualized. It has to be noted that in this scenario the muscle is only allowed to create
pulling forces like in reality.
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Figure 2: Left: Simplified Hill muscle model. Right: MBS with Hill-muscle strings and corresponding forces.
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Figure 3: Left: Length dependency of CC-element. Right: Velocity dependency of CC-elements, where v>0 corre-
sponds to a eccentric and v<0 to a concentric motion.

3. Optimal Control
Optimal control is a special class of infinite optimization problems on functions spaces, see [11]. Optimal control
problems for the biomechanical MBS treated in this work may be formulated as follows:

Minimize J =
∫ tF

t0
φ (q, q̇,u)dt +χ(q|t0 ,q|tF , t0, tF) (13)

∂L
∂q

(q, q̇)− d
dt

∂L
∂ q̇

(q, q̇)+F(q, q̇,u)+GT (q)λλλ = 0 , (14)

g(q) = 0 , (15)

c− ≤ c(q,u,λλλ )≤ c+ . (16)

As already introduced in section 2, the functions q : [t0, tF ]→ Rn, u : [t0, tF ]→ Rk and λλλ : [t0, tF ]→ Rm represent the
evolution of the configuration of the MBS, the control and the Lagrangian multiplier in the time interval [t0, tF ]. The



main goal of minimizing the objective function J is introduced in (13). As a side constraint the constrained equations
of motion (14)-(15) have to be fulfilled by the mappings q,u and λλλ . Additional equality and inequality constraints are
included to the optimal control problem by (16). It has to be noted that it is also possible to include the start t0 and end
time tF as unknown variables, see [11].

In this section the solution strategy for (13)-(16) is outlined. In section 3.1 five different objective functions are intro-
duced, which will be used later on in this work, section 3.2 explains the DMOCC approach as a solution procedure for
the optimal control problem, and a strategy to include contact between rigid bodies into the optimal control framework
is presented in section 3.3.

3.1. Objective functions
The main scope of the approach presented in this work is to create human like motion for specific tasks modeled with
help of optimal control. Therefore the following five objective functions

Ju =
∫ tF

t0
u ·u dt , Ju̇ =

∫ tF

t0
u̇ · u̇ dt , JT =

∫ tF

t0
T dt , Jt = t f , Jmix = cuJu + cu̇Ju̇ + cT JT + ctJt , (17)

are investigated, where Ju is minimal control, Ju̇ is minimal control change, JT minimal kinetic energy and Jt minimal
duration. The last objective function Jmix is a linear combination of the other ones, with parameters cu, cu̇, cT and
ct adjusted such that the solution of the optimal control problem corresponds to a human-like motion with realistic
muscle actuation. Therefore the four other objective functions have been investigated, and the characteristics of the
corresponding motions have been used to choose a proper linear combination.

3.2. DMOCC
To solve (13)-(16) the so called DMOCC method from [9] is applied, which belongs to the class of direct transcription
methods, where the optimal control problem is discretized in time, and the resulting finite dimensional optimization
problem is then solved. In the DMOCC approach, additionally a variational integration is used for the constrained
equations of motion (14)-(15). Therefore, the discretization is already applied in (8), and the variation is applied to the
discrete equations.

The evolution of the configuration q, the control signal u and the Lagrangian multipliers λλλ are discrtized by N+1 sam-
ples qI ∈ Rn, uI ∈ Rk and λλλ

I ∈ Rm with a fixed time step size h := tF−t0
N , i.e. qI is an approximation of the continuous

function q at tI := t0 +hI. On this basis a discrete Lagrangian Ld is constructed with the following approximation

Ld
(
qI ,qI+1)≈ ∫ tI+1

tI
L(q, q̇)dt . (18)

Additionally the action integral over the non conservative force is approximated by

F−g (qI ,qI+1,uI ,uI+1) ·δqI +F+
g (qI ,qI+1,uI ,uI+1) ·δqI+1 ≈

∫ tI+1

tI
F(q, q̇,u) ·δqdt , (19)

where δqI is the discrete variation in tI . The integral over the scalar product of the constraint equation and the La-
grangian multiplier is discretized by

h
2

(
g(qI) ·λλλ I +g(qI+1) ·λλλ I+1

)
≈
∫ tI+1

tI
g(q) ·λλλdt . (20)

Altogether, the variation of the discrete version of (8) with respect to qI and λλλ
I reads

N−1

∑
I=0

[(
∂1Ld(qI ,qI+1)+

h
2

G(qI)λλλ I +Fh
−(q

I ,qI+1,uI ,uI+1)

)
·δqI

+

(
∂2Ld(qI ,qI+1)+

h
2

G(qI+1)λλλ I+1 +Fh
+(q

I ,qI+1,uI ,uI+1)

)
·δqI+1 +

h
2

g(qI) ·δλλλ
I +

h
2

g(qI) ·δλλλ
I

]
= 0 ,

(21)

where ∂α Ld is the partial derivative of the discrete Lagrangian with respect to the first respectively the second input
α ∈ 1,2. Additionally to (21) initial conditions for q0, q̇0, qN and q̇N can be included (see [8] for further details).



Finally, the integral of the objective function (13) is approximated by φd(qI ,qI+1,uI ,uI+1)≈
∫ tI+1

tI φ(q, q̇,u)dt. Hence,
the discrete version of the optimal control problem (13)-(16) is given by

Minimize Jh =
N−1

∑
I=0

φd(qI ,qI+1,uI ,uI+1)+χ(q0,qN , t0, tN) (22)

∂2Ld(qI−1,qI)+∂1Ld(qI ,qI+1)+Fh
−(qI ,qI+1,uI)+Fh

+(qI−1,qI ,uI−1)+GT (qI)λλλ I = 0 I = 1, ...,N−1 (23)
g(qI) = 0 I = 0, ...,N (24)

ch
− ≤ ch(qI ,uJ ,λλλ K)≤ ch

+ , (25)

where (25) is a proper discretization of (16). The equations (22)-(25) define a finite dimensional nonlinear optimization
problem, which is solved with an interior point method implemented in the solver IPOPT [10].

3.2.1. Trapezoidal rule

In the results of this work a trapezoidal rule is used to approximate the integrals, which yields

Ld(qI ,qJ) =
h
2

L
(

qI ,
qJ−qI

h

)
+

h
2

L
(

qJ ,
qJ−qI

h

)
, (26)

F−d (q
I ,qJ ,uI ,uJ) =

h
2

F
(

qI ,
qJ−qI

h
,uI
)

, F+
d (q

I ,qJ ,uI ,uJ) =
h
2

F
(

qJ ,
qJ−qI

h
,uJ
)

, (27)

φd(qI ,qJ ,uI ,uJ) =
h
2

φ

(
qI ,

qJ−qI

h
,uI
)
+

h
2

φ

(
qJ ,

qJ−qI

h
,uJ
)

. (28)

(29)

The corresponding derivatives ∂Ld can be computed by exploiting the chain rule.

3.3. Contact
In this work, contact between two rigid bodies is restricted to a constraint, which rigidly connects both bodies. Hence,
there is no relative translation and rotation between the bodies if the constraint is satisfied. The presented concept could
be easily enhanced to other contact scenarios. A similar methodologyy to include arbitrary contact points in optimal
control can be found in [13, 14].

In this section, several enhancements are introduced to include contact into the optimal control problem. First, a method
to switch the contact constraint on and off and to compute the corresponding force using multiple phases is presented.
Additionally, a concept is outlined how an arbitrary contact point could be included into the optimal control problem.
Finally, an approach is shown how the contact constraint forces could be restricted to frictional sticking contact.

3.3.1. Concept of phases

To include contact between rigid bodies into the optimal control approach multiple phases are used, where different
additional constraints are applied. Therefore the interval I = [t0, tF ] is divided into a finite number M ∈ N of distinct
sub-intervals Ii := [t0I , tFI ], which fulfill

tFI = t0I+1 for I = 1, ..,M−1 . (30)

The constrained equations of motion on each interval are given by (14)-(15), containing an extra constraint gI : RN →
RMI with corresponding Lagrangian multiplier λλλ I : II → RMI . Hence, in every phase II the DAE system

∂L
∂q

(q, q̇)− d
dt

∂L
∂ q̇

(q, q̇)+F(q, q̇,u)+GT (q)λλλ +GT
I (q)λλλ I = 0 , (31)

g(q) = 0 , (32)
gI(q) = 0 (33)

has to be fulfilled, where again (G)I denotes the derivative of gI with respect to q. This model provides the possibility
to switch on and off the contact condition between two phases. Because the start and end time of each phase are also



unknowns, restricted by (30) only, the time point when the contact closes or opens is part of the solution of the optimal
control problem. This method may be incorporated into the DMOCC approach in a straightforward manner by applying
the respective variational integrator to each phase. Note that at the transition between phases it could be necessary to
add the velocity constraint

GT
I
(
q
)
q̇ = 0 , (34)

at the beginning t0I or the end tFI of a phase to prevent the constraint forces from adding work to the system.

3.3.2. Arbitrary contact point

To enable the contact point itself to be arbitrary, a master-slave concept used. Therefore, in the slave body the contact
point is assumed to be given by xs ∈ R3. The contact point on the master body px ∈ R3 is added as a parameter to the
optimal control problem (13)-(16). In a rigid connection also the relative rotation between two bodies is prescribed,
therefore an additional parameter pR parametrizing the transformation matrix R(pR) from the master to the slave body
is introduced. Let Rs ∈ SO(3) be the rotation and rs ∈ R3 the translation from base to the slave body. Then the same
transformations given by Rm and rm apply to the master body, resulting in the rigid contact constraint

gc =

(
RmR

T
s xs−px

log
(
RT (pR)RmR

T
s
)) , (35)

where log : SO(3)→ so(3) ' R3 denotes the inverse of the Rodriguez-formula, including the usual identification of
skew-symmetric matrices and vectors.

3.3.3. Sticking contact

By including additional unknown parameters into the optimal control problem one may also include frictional sticking
contact between two bodies. The two bodies Bs and Bm with corresponding transformations (rs,Rs) and (rm,Rm) are
rigidly connected, by a constraint equation gc(q). It is assumed that the corresponding constraint force GT

c (q)λλλ can be
decomposed into a global force fc ∈R3 and a torque τττc ∈R3. In the slave body a finite number K ∈N of fixed positions
xsi representing virtual contact points are defined. For each of these a parameter pi ∈ R3 is added to every time point
in the optimal control problem1. As these parameters should represent the local contact force, the constraints

fc =
K

∑
i=1

pi and τττc =
K

∑
i=1

(rs +RT
s xsi)×pi (36)

have to be fulfilled, such that the parameters pi yield a possible distribution of the constraint forces. In sticking contact
the tangential force fT is restricted by the normal pressure pN > 0, and the frictional constant µ ∈ R by the inequality
‖fT‖ ≤ µ pN. To transfer this to the local forces pi, a normal vector Nm in the master body is defined. Therefore the
sticking contact constraint in a contact point xsi reads

‖ pi− (pi ·RT
mNm)RT

mNm‖ ≤ µpi ·RT
mNm . (37)

By adding the equations (36) and (37) as constraints to the optimal control problem, the constraint force GT
c (q)λλλ is

implicitly restricted to frictional sticking contact with respect to contact points xsi and the normal Nm.

4. Box lift simulation
As application case we consider lifting of a box by two arms from a lower to a higher position. Each arm consists
of four bodies, upper arm, ulna, radius and hand, which are serially connected by four links, where the shoulder is
modeled as a spherical joint, the elbow is split into two revolute joints and the wrist is represented by a universal joint.
The box is allowed to freely translate and rotate with respect to the base frame, which corresponds to a six-dimensional
joint. To actuate the MBS each arm is equipped with 29 Hill-muscle strings, as described in section 2.4. Altogether
there are 20 degrees of freedom q ∈ R20 controlled by 58 control signals u ∈ R58. To include the process of grabbing
the box, the equations of motion are split into two phases, as discussed in section 3.3.1. In the first phase the box
is rigidly connected to a fixed frame by a corresponding constraint force, where at the end of the phase the hidden

1In the continuous case this would lead to an additional function pi : I→ R3, while in the discrete scenario in every node time tI I = 0, ..,N an
additional parameter is added.



constraint (34) has to be added to the optimal control problem. The start position for both arms is prescribed by given
joint angles, see left pictures in Figure 4. In the second phase both hands are rigidly connected to each side of the
box, while the corresponding contact point on each side of the box is unknown, see section 3.3.2. Again the associated
hidden constraint (34) has to be added at the start of this phase. To ensure frictional sticking with µ = 1 between the
hands and the box, at each hand four contact nodes are defined in the corners of the cuboid and in each contact side of
the box a contact normal is defined, see section 3.3.3. Therefore, both arms have to press the box against each others to
be able to lift it. At the end of the second phase the box should be positioned such that it matches a prescribed frame.
The start point of the first phase is fixed to zero, such that the unknown end time tF of phase two gives the duration of
the whole motion, which is bound from above by the maximum execution time of two seconds.

In Figure 4 the motions generated by the different objective function from (17) are shown as image sequence. The

Ju

Ju̇

JT

Jt

Jmix

Figure 4: Image sequence of the use case box lift, where each row represents a different objective functions and each
column a discrete time node.

color of the string muscles induce the actuation level, where blue represents zero and red full activation. In the case
of minimal actuation Ju it could be noticed that the system tries to use as much inertia as possible. Therefore, the box
and the arms perform a swing motion to reach the final position. The robot like motions generated by minimizing the
control change Ju̇ can hardly be depicted in the image sequence. By minimizing the kinetic energy the system tries to
move minimally and as slow as possible, which can be seen by the narrow grabbing position, which inevitably induces a



lot of work for the muscles (as indicated by the color of the muscles). In the case of minimal execution time, the motion
looks naturally, but most of the muscles are fully actuated, which certainly would yield to an unfavorable ergonomic
assessment of the work task. The parameter values used for the simulation for this test case are cu = 0.1, cu̇ = 0.01,
cT = 0.1 and ct = 1. Finally the mixed objective function Jmix yields a realistic human like motion as desired, with
muscle actuations not exploited to their maximum possible values.

In Figure 5 the actuation signal of the anterior deltoid is plotted against time for all objective functions. This muscle
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Figure 5: Control signal of the anterior deltoid muscle for the five different control signals.

is chosen as a representative, because it is one of the main actors when performing frontal lifting. At first one notices
that the signals differ in length because of the different execution times. The signal generated by Ju has the lowest
amplitude as expected due to the generated swingin motion that exploits inertia, and the characteristics of the actuation
likewise differs from those of the other signals. By minimizing the control change, a nearly constant signal is achieved
for the first phase, while in the second phase, where the box is connected to the hands, the actuation is almost linearly
increasing. The minimization of the kinetic energy JT yields a jump in the control signal at the transition between the
two phases, which compensates the sudden loss of the constraint force holding the box. The shortest signal is of course
generated by minimizing the duration, which is achieved by either maximum or zero actuation. This is holds likewise
for all other muscle actuation signals (not displayed here, as they have the same characteristics). The signal generated
by the mixed objective function results in a smooth motion of realistic duration. When the arms are moved to the box
in the first phase, the signal is constant due to the constant moderate flexion of the shoulder, as can be seen in the last
row of Figure 4. In the second phase, where the box is lifted due to the flexion of the shoulder, the signal is increasing.

5. Conclusion and further work
In this work a method to create human like motion for the simulation of working tasks has been presented. As appli-
cation case two arms equipped with muscles as actuators lifting a box with frictional contact has been investigated. In
further work the results from simulation will be validated against EMG-measurements and motion capture data.
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