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Abstract

In this paper, an approach for digital human maodigland an appropriate simulation environment &sented.
The human body or parts of it are modeled as ailoagly system with Hill-type muscle models as aaitsmtand
human like motions are created with an optimal @r(OC) framework. The focus is on inner (musdtgds

for ergonomic assessment and human like motionrgéor. A basic reaching test is set up in a motam
where muscle activation signals via EMG and uppedybtrajectories are measured with a motion capture
system when performing a multitude of differentatdag tasks. The measured data is used for vadidat the
simulation results and additionally muscle synesgiee extracted from the EMG signals. These syegican be
used as control parameters in the musculoskeleidemwhereby the number of actuators is reducki [€ads

to computational speedup, reduction of anatome@dlindancy and captures human muscle activationgs.of

Keywords: Digital human model (DHM), musculoskeletal modelyman motion, optimal control, DMOCC,
muscle synergy, Hill muscle model

1.Introduction

Due to the ongoing demographic change, there isowigg need for individualization in high qualityonk
places to prevent work related musculoskeletalrdes, especially in domains which still have aéagiount
of manual work (e.g. assembly processes in autematdustry). Therefore, there is an increasing aterfrom
industry for tools that can help develop safe angdmomic workplaces. To be able to do ergonomiduatens
in early stages of a process (e.g. when develomialy or workstations), human motions and theieraction
with the environment have to be included in thewation process, which is a challenging task. laiwell-
known problem when controlling complex multibodys®ms (MBS) that there is an infinite number ofgilole
ways to move from a start configuration to an endfiguration (kinematical redundancy). In biomedbah
systems like musculoskeletal models the problemnatomical redundancy has to be handled additiprtdéire
the number of actuators (muscles) in the modeighdr than the number of kinematical degrees aédioen,
which means that a specific motion can be genetayedd multitude of different muscle actuations. €olting a
digital human model (DHM) in the scope of ergonoragsessment adds some constraints to the generated
motions. On the one hand, the simulated task shimeildolved in a human like way, meaning that useces,
trajectories, velocities, accelerations etc. shduddchosen in a way a real human might or at leasid do it.
Further on, it is important that the muscle actosad for generating these motions are similar tséhwhich the
human central nervous system (CNS) would choostnese data can be used to derive an assessmeitaio
exhausting / ergonomic a motion (or repetitionghe§ motion, static postures...) will be for a hum&ven
though there are many possible options, humangjuise stereotypical muscle activations across iddiis to
create motions. A long standing question in neues®e and other disciplines is how the CNS chodisese
patterns and solves the redundancy problems. The &Mitionally has to handle the problem of newgcial
redundancy, meaning that a single muscle is intedvay several motor neurons [1].

One theory is that the CNS makes use of pre-defnéldiing blocks (or modules) in the spinal cordieth
impose a specific pattern of muscle activation,vikmas motion primitives or muscle synergies. Byeéirly
combining these modules, instead of explicitly\ating every single muscle in particular, the disienality is
reduced, which could simplify control while a widgnge of motor outputs can still be produced [2jother
(but not contradistinctive) approach to explainefirtdividual muscle activation patterns is the wmgatiity
principle which assumes that the CNS minimizes sdimel of cost function, whereas the “costs” to be



minimized are not clear and there have been irya#tins on e.g. muscle activations, jerk, torquange,
energy or time variance [3].

In our work we are not aiming on proving a conscheme of the CNS. Instead we concentrate on hiik&n
motion generation for ergonomic evaluation havirgpacific focus on inner loads and muscle activasignals.
We use a DHM based on a full dynamic MBS model wdikcrete mechanics and optimal control for
constrained systems (DMOCC) [4,5,6] which allows us to use, comparel atombine the above described
approaches in the application of human motion geier. The DHM can be actuated via joint torquésgle
muscles or muscle synergies. In Chaptew@ give a short overview of our overall methodi® tsed MBS to
model our DHM and the used OC code.

To get human motion data for validation and to gttite spatial characteristics of human reachingemants
we define and setuplasic reaching test in the motion lab. At this, the test subject samdfront of a plane and
moves his hand (tip of middle finger) from a reldx®nging start position to marked points on tt@nel The
test setup is adjusted to the test person’s antimefry. We measure 124 different motions includiifferent
distances and orientations to the plane, weightetioms and distinct final hand orientations. Thefate
electromyography (EMG) signals of 16 arm and shewfduscles, as well as the arm/hand/shoulder tcajes
are recorded with a motion capture system. In Ghapt the experimental setup and the data acanisis
described.

With a non-negative matrix factorization (NMF) atglom [7], we extractime invariant muscle synergies (aka.
synchronous synergies, spatially fixed muscle synergies or muscle modes) from the measured EMG data. The
robustness of the extracted Synergies is evaluatedconstructing the muscle activation signalsestain data
sets using muscle synergies extracted from othex skets (different points and weights) and calauathe
Variance Account For (VAF). The procedure for sgyeextracting is described in Chapter 4. We theift op
the basic reaching test in our DHM simulation eowiment and investigate the influence of differeastc
functions as well as the use of muscles and misseiergies as actuators for the resulting motiorsgefttories,
velocities) and muscle activation signals. Ourt faisnulation results are quite promising and givielence that
we follow an expedient approach that will lead tortan like motions and provides natural muscle atitm
signals.

2.Concept / Approach

The majority of the state of the art DHM's for enganic assessment work with static postures andqguasi-
static motions. However, in many cases humans #@xiloetic quantities when fulfilling a task and r=ider
(unconsciously) nonlinear properties of human fageaeration (e.g. force-length / force velocity eiegency of
muscles). This makes realistic human motions hargréedict with (quasi-) static models. Further gmse
models do not deliver time and velocity informatiwhich are important quantities for ergonomic assent
methods. Additionally, even if the simulated trajgg (sequence of postures) is similar to a realaahyic
trajectory, there can be a high diversity of inlwads, which might lead to wrong ergonomic estiorai In our
approach, we work with a DHM based on a full dyraMiBS code with optimal control, which allows us to
simulate dynamic tasks and to estimate the reguftirces and inner loads. Motions can be genendtethree
different actuation modes (AM1-AM3) which can berdnned with each other (see Figure 1).

In AM1, the DHM is actuated via joint torqueg)( meaning the OC code calculates a time series tfat
minimize a certain cost function while fulfillingpme motion constraints (e.g. start and end cordigom of the
DHM). The advantage of a joint torque driven moigethat there is no anatomical redundancy probligm,
calculates faster due to the reduced number ofatmt compared to a muscle driven model, and it lmn
sufficient for motion evaluations like reachabiligostures or time informations (e.g. to suppod anprove
methods-time measurement (MTM) or similar methods). The main drawback ofstlactuation mode is that it
does not deliver any information about inner forces

In AM2, Hill-type muscles as in [5] are included tine MBS model and are used as actuators, suchhbat
optimization produces a time series of muscle attm signalsd;). This modelling delivers information about
inner loads like e.g. muscle forces and the regyltdads to the human body, which can help to imgrine
ergonomic assessment of the simulated tasks. Addity, using muscles as actuators can lead to mealéstic
and human like motions as it is oriented closethto real human musculoskeletal system (hence tleegOC
system can exploit the nonlinear properties of hufoace generation).

In AM3, several muscles are grouped to musclesrgie® (v;), whereas the muscle activation signals result
from the weighted and summed combination of allesgies. In this case, the optimization calculatestime
series of the weightscy) for each synergy. The muscle synergies are drtlaitom measured EMG data as
described in Chapter 4. Using muscle synergiestmrs reduces the problem of anatomical redundand
can speed up calculation time. Additionally, musyjaergies capture the measured intermuscular icwtiah,
such that using them as actuators could lead te meadistic muscle activation signals. For exampiescle co-



contraction is something that is hard to predict with classical optimization methods [8] but is indirectly included
in the muscle synergies.

The actuation modes (AM1-AM3) can be combined with one another. So, e.g. muscles that could not be
measured via EMG, and are therefore not included in any muscle synergy, can be activated solo. Or, if for some
studies e.g. the inner loads of the upper extremity or the arm / hand are important, these parts could be modeled
and actuated using AM2 or AM3, whereas the rest of the model can be actuated by AM1.
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Figure 1: Overview of our DHM simulation environment and overall concept for human like motion generation;
From tasks that are performed in the motion lab, EMG signals and trajectories are measured. From the EMG
signals we extract muscle synergies that can be used as control parameters for the DHM. Depending on the
actuation mode, the OC framework calculates a time series of muscle synergy weights, joint torques or muscle
activations that fulfill the appropriate task. We can then compare the simulated trajectories and muscle activation
signals with those measured in the motion lab when performing the same task and adjust the (mixed) OC cost
function.

2.1. The DHM

In our work we use a (prototypical) MBS code based on [9] that uses minimal coordinates and facilitates fast
computational algorithms to determine forces and velocities [10,11]. We are able to define rigid bodies (bones),
joints and actuators freely adjusted to what we want to investigate. Depending on the created model, the resulting
equation of motion for the MBS is an ordinary differential equation (for models with a tree-like structure) or a
differential algebraic equation (for models containing closed loops). As actuators, we can specify motors
(torques between rigid bodies) and hill-type muscles (force elements between rigid bodies). To estimate correct
inner forces, the muscles are included in the simulation scenario. We use a string type Hill model as in [5] with a
contractile component (CC) and a parallel elastic component (PEC) (see Figure 2). The CC creates a pulling
force (F™) depending on the actuation level, the length (") and the contraction velocity of the muscle. The
PEC, a (non-)linear spring which is connected in parallel to the CC, represents the passive stiffness of the tissue.
The muscles are connected to the MBS through at least two body points (between which they build a straight
line) and can be led over via points to adjust the muscle paths.
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Figure 2: Rheological model of the simplified Hill-muscle



To simulate the basic reaching test, which is priegkin this paper, we build up a 5 DOF model ef @dnm and
shoulder as depicted in Figure 3Figure 1. The sleuis modeled as a spherical joint with three tiaal

DOFs. The shoulder anteversion, retroversion, attslu@and abduction are nonlinearly constrained {tene”

of the upper arm is restricted to lie in a defimede) and the internal and the external rotatienierited with a
box constraint (minimal and maximal angles). THeowl joint is modeled as two serial revolute joiwisere the
flexion / extension as well as the supination /nateon of the forearm is limited with box consttgiras well
(minimal and maximal angles). As the test persamsch are performing the basic reaching test, drésad to
keep the forearm, wrist and fingers stiff (see ¢bap), the bones of forearm and hand are modeeahe rigid
body. As actuators, we define 5 motors (same axth@ rotational DOFs) and 29 muscles (blue andimed in
Figure 3)

Figure 3: Test setup in our DHM simulation envir@mhwith a muscle driven model of the right atdppel
arm, forearm and hand modeled as rigid bodies Jgraynected via joints (5 DOF, red balls with gedlipsoids
delimiting the range of motion) and actuated biyibe muscle models (blue and red lines, 29 ms3cle

2.2. TheOC Code

The optimal control theory is a control strateggttis quite attractive in the application of DHMtwettion. In
principle, the OC code calculates the above desdrédrtuation signalg;( a;, ¢;) in a way, that a certain goal is
fulfilled while minimizing some cost function(s) @rnconsidering the side constraints that the eguositiof
motion of the MBS are fulfilled. In contrast to magher control strategies, the goal can be desdrib a quite
generic manner and no further control signals heavee defined.

In our simulation environment, the time continudd€ problem is discretized by the DMOCC approach [6]
where a variational integrator is used for the t@mst equation of motion. The resulting finite dims&énal
optimization problem is solved with the interioripomethod implemented in the solver IPOPT [12]. dest
functions we implemented minimal time, minimal Kisesnergy, minimal control and minimal control cge.
The cost functions can be linearly combined witk another to form a mixed cost function.

For the simulation of thbasic reaching test (see chapter 3), the start posture (start cordigpm of the MBS) is
set by determining the degrees of freedom of theSMBorresponding to the start configuration of tést
persons). As goal (end configuration of the MBS)deéine the tip of the middle finger to be at atakr point in
the room (target points of the basic reaching @sftined in the world coordinate system (WCS). Aiddally

the corresponding axis of the hand coordinate sy$t¢CS) have to be in a certain angular range éoMCS to
specify the final hand positions neutral, rotatediards and rotated outwards. These angles aretiotiaty

chosen to be in a wider range in order to let tlied@de “choose” a “comfortable” solution as the fErsons
did while test execution.

All other motion parameters (trajectories, jointques, muscle actuations etc.) result from the ©@cThe
described constraints were not changed when atbetween the actuation modes (AM1-AM3).

3.TheBasic Reaching Test

The basic reaching test is set up for two purpadSeshe one hand, we want to identify the spatiaracteristics

of the muscle activation patterns generated by2IN& to control human reaching movements in a wéthgye of
different motions. Therefore, we measure and aeatiie EMG signals of 124 different reaching motiansl
extracttime invariant muscle synergies as described in chapter@n the other hand, we use the measured motion
data to validate our simulation results and to sidjlne cost functions. We want to compare the tieguimuscle



activation profiles of our musculoskeletal modethwihose measured at the basic reaching test toeghstic
muscle activation profiles. Additionally, we warmt ¢ompare the trajectories and velocity profiledclhresult
from all simulation models (AM1 — AM3). Thereforee measure the trajectories of thorax, shoulden, amd
hand with a motion capture system synchronizetl¢éd8MG signals.

Experiment design: The test person stands in front of a plane withmbrked target points on it (Figurdeft).
The arrangement of these points is adjusted ttetftepersons anthropometry as depicted in Figumaddle | eft.
The inner radiusR;) corresponds to the upper arm length, the outdiusaR,) equals 90% of the maximal
reachability Rax reacn) Of the test person. The maximal reachability sineated, in frontal position and in
distanced; (see below) to the test plane, as follows: Thgesuibd is instructed to move the tip of the middle
finger to the highest reachable point on the plahe keeping his trunk and the center of the stleujoint in
positon. This is repeated for the lowest reachpblat as well as those being most far to the ragid the left on
the horizontal line in the height of the should&om the four resulting distances the smallestisrgefined as
Rmax reach (Whereas all of them are in the same range). &tget points are placed on the intersectiong;of
and R, with the horizontal and the vertical lines andirth®sectrixes. The center &f; andR, is positioned
concentric with the center of the shoulder joinbfected to the plane) in a relaxed and uprightditeg position.
We specify two distanced between the plane andestepersond; andd,) which are also determined based on
the users anthropometry as shown in Figunagdtlle right. Distanced; corresponds to the length of the forearm
whereasl, is defined as the distance between the subjecttenglane when standing in a frontal positionhi® t
plane with the forearm parallel to the ground anmel &nglea = 45° between the upper arm and the subjects
coronal plane.

Figure 4: The Basic reaching testeft) Test execution in the motion lab; (middle left) the three final har
orientations; (middle right) adaption of the target point placement to the test persons anthropometry; (right)
distances!; andd, to the measuring plane, adapted to the test pesaihropometry

Test execution: We perform twelve different test scenarios, whacd shown in Table 1. In all scenarios the test
persons are instructed to stand in a straight gnidjht posture at the marked positions on the giowith the
arms hanging relaxed in a natural position. We nmizkés from two distancesl( and d,) and two distinct
orientations to the test plane (frontal and lajedal the frontal positions the subjects coronalngl is parallel to
the test plane, in lateral positions the subjeetgit®l plane is parallel to the test plane (rigihtn oriented
towards the test plane). The test persons areugistt to move the tip of the middle finger (aftee start signal)
quickly to the target point on the plane and kdep the final position for about one second. Wéirdethree
final hand orientations: Neutral (N), rotated indsr(IRO) and rotated outwards (ORO) as seen inr&igu
Additionally we make measurements with a weighf adjusted to the test persons wrist (1kg). Eack ta
repeated five times. The start signal just indisalat data recording started, the timing (stard, @olding time)
for each repetition is not restricted by signald &eely chosen by the test persons. The subjeetadvised to
keep shoulder and trunk in position while moving #rm. A palmar flexion and a dorsal extensionasichand
fingers as well as an ulnar abduction and a raddluction should be avoided (which means that aheafm,



hand and fingers should be kept stiff as one rigid body). The motions are not restricted by any kind of apparatus
to keep them natural.

Table 1: The different scenarios of the basic reaching test

Distance | weight | Orientation Target Points Hand positions
Test scenario 1 dy No Frontal 17 (P1-P17) N
Test scenario 2 dy No Frontal 17 (P1-P17) 1RO
Test scenario 3 dy No Frontal 17 (P1-P17) ORO
Test scenario 4 d, No Frontal 9 (P9-P17) N
Test scenario 5 d, No Frontal 9 (P9-P17) IRO
Test scenario 6 d, No Frontal 9 (P9-P17) ORO
Test scenario 7 d, No Lateral 5 (P1,P5,P9,P13,P17) N
Test scenario 8 d, No Lateral 5 (P1,P5,P9,P13,P17) IRO
Test scenario 9 d, No Lateral 5 (P1,P5,P9,P13,P17) ORO
Test scenario 10 dy Yes Frontal 17 (P1-P17) N
Test scenario 11 d, Yes Frontal 9 (P9-P17) N
Test scenario 12 d, Yes Lateral 5 (P1,P5,P9,P13,P17) N

In the test scenarios 1 to 3 the subjects are standing in frontal position to the test plane in distance d,. Target
motions to all 17 target points are measured, each point with the three final hand orientations and without
weight. The labeling of the target points is depicted in Figure 5. In the scenarios 4 to 6 the subjects are standing
in frontal position to the test plane in distance d,. As the maximal reachability is determined in distance d;, only
the target points on the inner circle (P9-P17) are measured. Again each point with the three above described
different final hand orientations and without extra weight. In scenario 7 to 9 the subjects are standing in lateral
position to the test plane in distance d,. Target motions to the target points on the vertical line are measured (P1,
PS5, P9, P13, P17), each point with the three different final hand positions and without weight. In scenarios 10 -
12 we made measurements with the weight cuff adjusted to the subjects hands. In scenario 10 the subjects are
standing in frontal position to the test plane in distance d; and target motions to all 17 target points are measured
with a neutral final hand position. In test scenario 11 the subjects were standing in frontal position to the test
plane in distance d, and target points on the inner circle (P9-P17) are measured with a neutral final hand
position. In the last scenario the subjects are standing in lateral position to the test plane in distance d, and target
motions to the points on the vertical line are measured (P1, P5, P9, P13, P17) with a neutral final hand position.
In sum, we measure 124 distinct motions (tasks) whereas every motion is repeated and recorded five times
(repetitions).

Figure 5: labeling of the target points

We additionally estimate the values for the maximal voluntary contraction (MVC) of the measured muscles.
Therefore we measure the EMG values when performing the MVC tests as described in [13].

Data acquisition: In all test scenarios the position of the right hand, forearm, upper arm, shoulder and the thorax
as well as the placement of the target points and the activity of 16 involved arm and shoulder muscles are
recorded. The positions are tracked with an optical motion capture system (Qualisys, 9 cameras, Oqus 400 and
Oqus 310+) with an accuracy of < Imm and a sample frequency of 240Hz. The Markers on the test persons are
placed according to the recommendations of the international society of Biomechanics (ISB) as described in
[14]. Palpation of anatomical landmarks is accomplished manually, following the guidelines of [15]. We
additionally place a marker on each of the 17 target points on the test plane to be able to assess the characteristics



of close-to-goal verlocities / trajectories and thBuence of motion precision. The surface EMGnsig are
acquired with a wireless 16-channel Delsys systétin avsample frequency of 2000Hz. The measured l@sisc
are listed in Table 2. The EMG sensor locationsewdrosen following the recommendations of SENIAM an
Konrad [13, 16, 17]. Before applying the sensong, $kin is shaved, cleaned with alcohol and rublbid
abrasive gel as recommended in [17]. Data recor@iiraion data as well as EMG signals) for each &aked
with a signal about one second before the firstionoand was recorded continuously during all rejuets of
each task.

Table 2: List of measured muscled

EMG Muscle Short name

Sensor
01 M. trapezius desc. TraDesc
02 M. trapezius transv. TraTrans
03 M. trapezius ascend. TraAsc
04 M. deltoideus clavicularis (ant. DeltAnt
05 M. deltoideus acromialis (med)) DeltMed
06 M. deltoideus spinalis (post.) DeltPost
07 M. biceps brachii Bic
08 M. triceps brachii longus TriLong
09 M. triceps brachii lateralis TriLat
10 M. brachioradialis BrRad
11 M. pectorialis major clavic. PectClav
12 M. pectorialis major sternal PectSter
13 M. infraspinatus InfraSp
14 M. teres major TeresM
15 M. latissimus dorsi LatDors
16 M. pronator teres PronTer

The basic reaching test is executed with two rigéahded males in the age of 25 and 35 after givirgr t
informed consent. No (pre-existing) injuries or miyments of the skeletal and locomotor system efatm and
upper body were known at the time of test execution

4.Muscle Synergies Extraction

The muscle synergy hypothesis is one approach paiexhow the CNS might simplify motor control. The
have been several investigations on humans andasimhich give evidence to suggest that the CN&esa
use of a modular organization of the underlying anatircuits, which would reduce the number of degref
freedom which have to be specified [2,7]. One repnéation for such a modular organizationtare invariant
muscle synergies, whereas one synergy stands for a group of musdieh can be activated synchronously in a
fixed balance that does not change over time. Bgalily combining the weighted outputs of each inedl
synergy, a specific motor output is generated. Muescle activations for a specific motor task wotlldn be
described by

n
a0 =) O,

i=1
whered is a vector that contains the activity values éach involved muscle, n is the number of synergies
involved in this task, the weight is a non-negative scalar value that indicates active the synergw; is, and
wj; is a vector containing the fixed balance of atfivialues for each muscles in this synergy. Asutheerlying
synergies for human motion generation cannot berahéhed or identified in a direct way, a mediatethmd to
estimate muscle synergies from the measured EM@akigevolved. Commonly some kind of factorization
algorithm is used to identify a set of basis vegtawhich can reproduce the measured EMG signaknin
appropriate way.

In our work, we are not aiming on proving or fajgily the muscle synergy hypothesis for human motion
generation. Instead, we want to use muscle syremgacted from human motion data to actuate ddiMD
which might bring several advantages. Of course,tt@n one hand, it is a promising way to build up a
musculoskeletal model with an actuation method deis close to nature as possible if the focus isoacle
actuation profiles and inner loads. However, evethé human CNS does not make use of a (fixed) taodu
organization of the underlying motor circuits, tge of muscle synergies extracted from real matiata can
still be quite attractive as actuation principle £o0DHM. From a mathematical point of view, it isvbous that
time invariant muscle synergies have two valuabtperties. For one, they capture the spatial reiigs of the
measured EMG data, which is important informatemg could help to produce more realistic muscleatizin



profiles (e.g. is a muscle co-contraction in parts already contained in the synergies, which is hard to predict using
optimization methods and single muscles as actuators). Further on, the use of muscle synergies reduces the
number of actuators which simplifies control and reduces the calculation time. Having in mind that the number
of actuators is rising drastically when using muscles instead of joint torques as actuators, this can be exploited
for speeding up calculation time as well as for reducing the problem of anatomical redundancy.

Data processing: The raw EMG signals are processed in a customized software written in Matlab (Mathworks).
As described in the previous chapter, the EMG data is acquired continuously during execution of all five
repetitions of each tasks. The signals are then separated repetition-wise into single sequences by visually
identifying the start and the end of each motion. As start, we define the first visible movement of the arm /
shoulder from the hanging rest position, and the end of the motion is defined as the moment when the tip of the
middle finger reaches the target point and movement comes to rest. In order to capture all EMG signals
potentially involved in the motion generation process, 200 frames (£ 0,1s) before the first visible movement and
after reaching the final hand position are included in each sequence. The EMG signals of each sequence are zero
calibrated (by subtracting out the mean values), full wave rectified and low pass filtered (butterworth filter, cut
off frequency 5 Hz, filter order 2). The EMG signals of each repetition are then arranged in a Matrix R; (size tg
by n,,, where n,, is the number of measured muscles and tz is the number of time samples of this repetition),
that are concatenated vertically to the Matrix M, which contains all measured tasks. We then apply a NMF
algorithm to the Matrix M, providing two matrices C; and W; such that

R, s
: ]; M, = Z C; * W; + residuals,
Rn 1

M,:=

where C; is a Matrix (size t, by ng, where t, is the number of time samples for all tasks and ng is the number of
synergies) containing the weights to approximate the measured EMG signals (M) by multiplying them with the
synergy Matrix W; (size ng by n,,). The number of synergies (n;) is a free parameter of the NMF algorithm and
has to be chosen beforehand. This is generally done by calculating the variance account for (VAF) for a
multitude of numbers of synergies and selecting a value for n; where a certain threshold is reached (commonly
90% VAF) or the graph of the cumulative VAF presents a significant change of slope.
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Figure 6: Variance Account For

We calculate the VAF (see Figure 6) as described in [18] for values of ng between one and sixteen (each by
running nnmf 25 times to prevent it to converge to a local minima). The 90% VAF threshold is reached already
with five synergies, which would reduce the number of actuators by two thirds. In our simulations, we work with
different values for ng; and investigate the influence on the resulting (simulated) muscle activation signals.
Additionally we validate the chosen values for ng on the input-space side (measured muscle activation signals).
Therefore, we extract muscle synergies from the Matrix M., which contains only muscle signals from reaching
motions to those points which are placed on the horizontal and the vertical line (P1, P3, P13, P05, P07, P09, P11,
P13, P15, P17) and used these synergies to reproduce the muscle signals measured from target points placed on
the diagonal lines (P2, P4, P6, P8, P10, P13, P14, P16). To calculate appropriate weights (Matrix C;) to
approximate these muscle signals (M,), we use a least-square fit algorithm with non-negative values. The same
procedure we apply to the Matrix M,,,, which contains only measurements of motions without weight-cuff. We
then use the here extracted synergies to reproduce the muscle signals measured when doing motions with weight
cuff adjusted to the test persons wrist. In Figure 7 the results for ng = 10 are show. The measured EMG signals,
normalized to the MVC values of the respective muscle (vertical axis), are plotted with respect to time
(horizontal axis: frames with framerate = 100Hz).

As one can see, the measured signals have a clear characteristic that is preserved over several repetitions, which
indicates that the muscle activation signals are not just artefacts of measurement methods or noise. Further on,
the muscle activation signals can be very well reproduced by using the extracted muscle synergies, even in those
cases where the reproduced signals are not included in the NMF algorithm. Shown are the measured and
reproduced EMG signals of the musculus biceps brachi (first column), musculus triceps brachii lateralis (second
column) and musculus deltoideus clavicularis (anterior) (third column).
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Figure 7: Measured and reproduced EMG signalseiniiscul us biceps brachi (first column),musculus triceps
brachii lateralis (second column) andhusculus deltoideus clavicularis (anterior) (third column) for differer
scenarios (rows).

The original (measured) EMG signals of the firgpetition of each task are plotted with green scgiafde
repetitions 2 - 5 are plotted as purple, oranghoweand blue lines. The via muscle synergies rdpced EMG
signals of the first repetitions are plotted witluéb stars. In the first row the signals of the reag motion to
point P1 in test scenario 1 are depicted. For synextraction, the MatriM, was used, so the signals to be
reproduced are involved in the NMF algorithm. Ie #econd row, the signals of the reaching motigootot P2

in test scenario 1 are plotted. For synergy extvadhe MatrixM, is used, hence the reproduced signals are not
involved in the NMF algorithm. In the third row tlsggnals of the reaching motion to point P1 in s&stnario
10, where motions with weight cuff adjusted to thest are measured, are shown. For synergy extradtie
Matrix M,,,, is used, meaning the reproduced signals are olided in the NMF algorithm here as well.

5.Conclusion and future work

An optimal control framework for dynamic and hunléde motion generation is developed, which allows t
exploit the advantages of different DHM actuationdas like joint torque, single muscle and muscleesyy
actuation. Further on, measurements in the motbnwere made that allow the validation of the satiah
results (trajectories, speed profiles, muscle atitw signals). From the measured EMG signals reuscl
synergies were extracted and validated, that camsee to actuate the DHM. This actuation mode resluc
anatomical redundancy, and we expect it to leaa ¢computational speed up in the musculoskeletallaiion
environment. Further on, the spatial charactedst€ human muscle activations, captured throughctaus
synergies, are brought into the simulation procedsch can lead to more natural muscle activatiattepns.
First simulation results are quite promising, amel ¢tharacteristics of the resulting motions antvatibn signals
for distinct cost functions and the outcomes fokedi cost functions (e.g. to simulate fast vs. @echotion
behavior) will be further investigated. Additionalit is planned to measure and simulate furthekstashich
include e.g. the interaction with the environmexntérnal forces).
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